MATH 2050 C Lecture on 3/25/2020

* Important Announcement about Midterm *

- · available on Apr 15,2020 (Wed) at 8:30 am via BLACKBOARD
- · submission deadline : Apr 16, 2020 (Thur) at 8:30 am
- · Covers Ch. 2-4 (except binary/decimal representations, liminf/limsup, 3.6.3.7, 4.3)

٦

Common Mistake in His: When ruling out the possibility
$$x = \lim_{k \to \infty} |x_k| = 0$$
.
Some of you wrote "Since $x_n > 0$ $\forall n \in \mathbb{N}$, we have $x > 0$ " NOT TRUE
"you need to show " $\exists c > 0$ set $x_n \ge c > 0$ $\forall n \in \mathbb{N}$, then " $x \ni c > 0$ ".
Sequential Criteria: Let $f: A \subseteq R \rightarrow iR$, $C \subseteq R$ be a cluster pt. of A.
 $\lim_{k \to \infty} f(s) = L <=>$ $\forall seq. (x_n) in A satisfying (M) { $\lim_{k \to \infty} (x_n) = C$
 $x_n \ge c$ we have $\lim_{k \to \infty} (f(x_n)) = L$
 $(e = k def^2)$ (next time)
(i) thus / facts about limit of sequences: (next time)
(ii) thus / facts about limit of seq. carries over to limit of functions
(iii) not easy to prove existence of $\lim_{k \to \infty} f(x_n)$.
Divergence Criteria:
(I) f does $\frac{NDT}{L}$ converse $\langle = \rangle$ $\exists seq. (x_n)$ in A satisfying (M)
(I) f does $\frac{NDT}{L}$ converse $\langle = \rangle$ $\exists seq. (x_n)$ in A satisfying (M)
(I) f does $\frac{NDT}{L}$ converse $\langle = \rangle$ $\exists seq. (x_n)$ in A satisfying (M)
(I) f does $\frac{NDT}{L}$ converse $\langle = \rangle$ $\exists seq. (x_n)$ in A satisfying (M)
(II) f does $\frac{NDT}{L}$ converse $\langle = \rangle$ $\exists seq. (x_n)$ in A satisfying (M)
(II) f does $\frac{NDT}{L}$ converse $\langle = \rangle$ $\exists seq. (x_n)$ in A satisfying (M)
(X_n = $\int_{\frac{N}{R}} \frac{1}{x}$ does $\frac{N}{R}$ exist.
(II) f does $\frac{N}{R}$ converse $\langle = \rangle$ $\exists seq. (x_n)$ in A satisfying (M)
(II) f does $\frac{N}{R}$ converse $\langle = \rangle$ $\exists seq. (x_n)$ in A satisfying (M)
(II) f does $\frac{N}{R}$ converse $\langle = \rangle$ $\exists seq. (x_n)$ in A satisfying (M)
(II) f does $\frac{N}{R}$ converse $\langle = \rangle$ $\exists seq. (x_n)$ in A satisfying (M)
(II) f does $\frac{N}{R}$ does $\frac{N}{R}$ exist.
(III) f does $\frac{N}{R}$ does $\frac{N}{R}$ exist.
(III) $\frac{N}{R}$ does $\frac{1}{R}$ does $\frac{N}{R}$ exist.
(IV) $\frac{N}{R}$ does $\frac{1}{R}$ does $\frac{N}{R}$ exist.
(IV) $\frac{1}{R}$ does $\frac{1}{R}$ does $\frac{N}{R}$ exist.
(IV) $\frac{1}{R}$ does $\frac{1}{R}$ does $\frac{N}{R}$ exist.
(IV) $\frac{1}{R}$ does $\frac{1}{R}$$

